Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application

نویسندگان

  • Hamidah Jantan
  • Abdul Razak Hamdan
  • Zulaiha Ali Othman
چکیده

Human Resource (HR) applications can be used to provide fair and consistent decisions, and to improve the effectiveness of decision making processes. Besides that, among the challenge for HR professionals is to manage organization talents, especially to ensure the right person for the right job at the right time. For that reason, in this article, we attempt to describe the potential to implement one of the talent management tasks i.e. identifying existing talent by predicting their performance as one of HR application for talent management. This study suggests the potential HR system architecture for talent forecasting by using past experience knowledge known as Knowledge Discovery in Database (KDD) or Data Mining. This article consists of three main parts; the first part deals with the overview of HR applications, the prediction techniques and application, the general view of Data mining and the basic concept of talent management in HRM. The second part is to understand the use of Data Mining technique in order to solve one of the talent management tasks, and the third part is to propose the potential HR system architecture for talent forecasting. Keywords—HR Application, Knowledge Discovery in Database (KDD), Talent Forecasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Talent Forecasting using Data Mining Classification Techniques

Talent management is a very crucial task and demands close attention from human resource (HR) professionals. Recently, among the challenges for HR professionals is how to manage organization’s talents, particularly to ensure the right job for the right person at the right time. Some employee’s talent patterns can be identified through existing knowledge in HR databases, which data mining can be...

متن کامل

Data Mining Classification Techniques for Human Talent Forecasting

In knowledge management process, data mining technique can be used to extract and discover the valuable and meaningful knowledge from a large amount of data. Nowadays, data mining has given a great deal of concern and attention in the information industry and in society as a whole. This technique is an approach that is currently receiving great attention in data analysis and it has been recogni...

متن کامل

Academic Talent Model Based on Human Resource Data Mart

In higher education such as university, academic is becoming major asset. The performance of academic has become a yardstick of university performance. Therefore it's important to know the talent of academicians in their university, so that the management can plan for enhancing the academic talent using human resource data. Therefore, this research aims to develop an academic talent model using...

متن کامل

Model Base On Human Resource System Using Classification Technique

In higher education such as university, academic is becoming major asset. The performance of academic has become a yardstick of university performance. Therefore it's important to know the talent of academicians in their university, so that the management can plan for enhancing the academic talent using human resource data. Therefore, this research aims to develop an academic talent model using...

متن کامل

P17: Human Resource Management in Organization

Effective talent management, quantitative and qualitative need for the organization to talents will be determined based on strategy and business goals. As organizations face increasing competitive challenges of the future and capable to manage these challenges, managers need to be effective. Thus, talent management and management every day is very important in organizations and prospective. Eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009